ORIGINAL ARTICLE

Evaluation of germination and vigor indices associated with *Fusarium*-infected seeds in pre-basic seeds wheat fields

Farshid Hassani*, Leila Zare, Nima Khaledi

Seed and Plant Certification and Registration Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran

Vol. 59, No. 1: 69-85, 2019

DOI: 10.24425/jppr.2019.126037

Received: August 3, 2018 Accepted: February 21, 2019

*Corresponding address: farshid.shz@gmail.com

Abstract

Seed-borne diseases of wheat such as Fusarium head blight (FHB), a fungal disease caused by several species of Fusarium, results in reduced yield and seed quality. The aim of this study was to identify the Fusarium species, the effect of Fusarium-infected seeds on germination and vigor indices and to determine the location of Fusarium spp. in seeds, as well as to investigate the pathogenicity and variability of aggressiveness of the isolates obtained from pre-basic seeds wheat fields in Iran. According to morphological and molecular characters, the species F. graminearum, F. culmorum, F. avenaceum and F. poae were identified. Among the isolates, F. graminearum was the predominant species with the highest frequency and relative density of 92.9% and 70.9%, respectively. We observed that germination and vigor indices were decreased due to increased Fusarium-infected seeds. Results indicated significant differences among cultivars and seed-borne Fusarium levels. While a higher infection level of Fusarium spp. most commonly occurred in the seed coat, only F. graminearum was observed in embryos. Our study about pathogenicity showed that 77.3% of the Fusarium spp. isolates were not pathogenic and 22.7% isolates of Fusarium spp. were pathogenic or weakly pathogenic. Our results indicated that variability in aggressiveness among isolates of a species and positive correlation may be determined by pathogenicity tests. This is the first time the location of Fusarium spp. in seeds has been identified. It is also the first time that Fusarium-infected seeds in pre-basic seeds wheat fields of Iran have been evaluated.

Keywords: Fusarium head blight, Fusarium spp., location, seed-borne, wheat

Introduction

Wheat (*Triticum aestivum* L.) is one of the most important small grain cereals used for animal feed and human consumption worldwide. In 2014, world production of wheat was 726 million tons, making it the third most-produced cereal after maize and rice (FAOSTAT 2015). Major wheat producers include: China, India, Russia, United States of America, France, Canada, Germany, Pakistan, Australia, Ukraine, Turkey, United Kingdom, Kazakhstan, Poland and Iran contributing 79.4% of world production. In Iran, it is

the most important food grain and is cultivated on an area of about 7.3 million hectares with a total production of 10.6 million tons. The seed production of wheat follows a generation system that includes breeder, prebasic, foundation and certified seeds, based on nomenclature of the Organization for Economic Cooperation and Development (OECD) (Anonymous 2015).

Seed-borne diseases of wheat such as Fusarium head blight (FHB) are considered to be a constraint in wheat seed production, because they reduce yield and seed quality (Agarwal *et al.* 2008; Kumar *et al.* 2008). FHB-affected seed may become contaminated with mycotoxins, such as trichothecenes, which can cause several health problems for humans and livestock as well as reduce seed germination and embryo growth (Pestka 2010).

The disease is caused by different species of *Fusarium*, with different life styles especially *F. graminearum* (Schwabe) [teleomorph *Gibberella zeae* (Schw.) Petch], *F. culmorum* (W.G. Smith) Sacc. (teleomorph unknown), and *F. avenaceum* (Fries) Sacc (teleomorph *Gibberella avenacea* R.J. Cooke) (Boutigny *et al.* 2014).

Fusarium head blight causes losses in yield of wheat from 30 to 70% (Parry et al. 1995). In Iran, FHB occurs frequently in Golestan, Mazandaran, and Ardabil provinces. In recent years, the wheat losses in Iran due to FHB have increased significantly (Haratian et al. 2008; Davari et al. 2013; Khaledi et al. 2017). Fusarium head blight may cause yield losses in some fields of up to 70% (Davari et al. 2006). Although previous studies have identified losses in yield of wheat, so far, there has been no report from seed production fields of wheat. Numerous of studies have examined the effects of FHB on seed germination (Browne and Cooke 2005; Tekle et al. 2013; Shin et al. 2014). If FHB-affected seed is used for planting, seedling blight on roots and coleoptiles, reduced germination and vigor (Browne and Cooke 2005) and pre- and post-emergence death of seedlings (Asran and Eraky Amal 2011), and variation in plant morphology may occur (Rajput et al. 2005).

Aggressiveness is an important factor for determining the potential ability of *Fusarium* isolates to cause yield losses and FHB epidemics in wheat. More detailed knowledge about the extensive variability of aggressiveness is essential for understanding the interaction between wheat and *Fusarium* species causing FHB (Wu *et al.* 2005; Khaledi *et al.* 2017). *Fusarium graminearum* caused the greatest reduction in germination of wheat seeds followed by *F. avenaceum* and *F. culmorum*, and was the least for *F. poae* (Browne and Cooke 2005). Several strategies have been used to manage FHB disease, including crop rotation, planting resistant or tolerant cultivars, and chemical and biological control (Wegulo *et al.* 2015).

Different wheat genotypes express various levels of resistance against *Fusarium* spp. causing FHB (Mesterházy *et al.* 2005). Resistance to FHB is a complex trait, with polygenic inheritance, and its expression is highly influenced by the environment (Ruan *et al.* 2012; Buerstmayr and Buerstmayr 2015). To date, two main types of resistance to FHB are widely accepted: type I – resistance to initial infection; and type II – resistance to fungal spread within the spike. Additionally, three other types of resistance were reported by Mesterházy *et al.* (1999): type III – resistance to deoxynivalenol accumulation; type IV – resistance to kernel infection; type V – tolerance.

Despite the economic importance of FHB in wheat seed production, understanding the percentage of infected seeds, the frequency and identification of seedborne *Fusarium* species in pre-basic seeds wheat fields is limited. Therefore, the main objectives of this study were to identify and determine: (i) the frequency of *Fusarium* spp. isolated from wheat seeds in Iran, (ii) the effect of *Fusarium* spp. on germination and vigor indices, (iii) the location of the *Fusarium* spp. in the seed, and (iv) the pathogenicity and variability of aggressiveness of *Fusarium* spp. and to identify possible correlation.

Materials and Methods

Sample collection

A total of 85 seed samples of pre-basic seeds of various wheat cultivars with different levels of FHB resistance were collected from various wheat fields, located in Golestan, Mazandaran and Ardebil provinces in Iran after harvest in 2016–2017 (Fig. 1). Sampling was done according to International Seed Testing Association guidelines (ISTA 1986). The seed samples were packed in paper envelopes and stored in a freezer at the Seed and Plant Certification and Registration Institute (SPCRI) in Iran, until used for subsequent studies.

Isolation and identification of Fusarium species

For isolation of Fusarium spp., 400 seeds of each sample were surface sterilized by immersion in 1% sodium hypochlorite for 3 min and rinsed three times in sterile distilled water. The sterilized samples were placed in water agar as a general medium (Burgess et al. 1994) and a semi-selective medium for Fusarium, i.e., peptone-pentachloronitrobenzene agar (PPA), and incubated at $25 \pm 1^{\circ}$ C in a 12h light/dark cycle for 10 days. The resulting Fusarium colonies were single-spored and transferred to potato dextrose agar (PDA), carnation leaf agar (CLA) and spezieller nährstoffarmer agar (SNA) plates for morphological identification (Leslie and Summerell 2006). Morphological identification was based on Starkey et al. (2007) and Leslie and Summerell (2006). After identification, the isolates were deposited in the fungal culture collection of the Seed Health Laboratory of Seed and Plant Certification and Registration Institute (SPCRI) in Iran. All fungi were maintained on PDA medium at 4°C and sub-cultured monthly. The isolation frequency (Fr) and relative density (RD) of fungi were recorded and calculated (Hajihasani et al. 2012; Tsedaley 2016; Nayyar et al. 2018) as follow:

Fig. 1. Map of Iran showing sampling regions and data related to *Fusarium* isolated from different locations in pre-basic seeds wheat fields. Gray areas show where sampling was performed

$$Fr = \frac{ns}{N} \times 100 \ [\%],$$
$$RD = \frac{ni}{Ni} \times 100 \ [\%],$$

where: ns = the number of samples in which a fungus occurred, N = the total number of samples, ni = the number of isolates of a given fungal species, Ni = the total number of fungal isolates obtained.

DNA extraction

Mycelial plugs (0.5 cm²) were removed from PDA plates, transferred into 250 ml Erlenmeyer flasks containing 100 ml potato dextrose broth (PDB) medium, and incubated at 25°C for 10 days. Mycelial mats were dried between sterile filter papers and ground to a fine powder with liquid nitrogen. Total genomic DNA was extracted with a commercially available DNA extraction kit (Genomic DNA isolation kit IV; DENA Zist Asia, Iran) according to the manufacturer's instructions. DNA concentration was quantified with a NanoDrop spectrophotometer and the quality was verified by 1% agarose gel electrophoresis. The DNA samples were diluted using sterilized distilled water to a final concentration of 50 ng \cdot µl⁻¹ and stored at -20°C until use.

Fusarium species identification by PCR

To confirm the morphological identification of species, conventional polymerase chain reaction (PCR) was performed using specific primers (Table 1) for molecular identification of four *Fusarium* species, which may potentially infect wheat seeds in the investigated area. The PCR reaction was performed in a 25 μ l volume, each reaction contained 7.5 μ l of sterile water, 12.5 μ l of PCR Master Mix (Pars Tous, Iran), 1 μ l of 10pMeach forward and reverse primers and 3 μ l of template DNA. The PCR cycle consisted of an initial denaturation step at 94°C for 2 min followed by 35 cycles of denaturation (95°C for 35 s), annealing (times and temperatures for each primer pair are listed in Table 1), extension (72°C for 30 s) and final extension at 72°C for 7 min. All primers used in this study were purchased from

Species	Primer	Sequences (5'–3')	Product size [bp]	PCR conditions (anneal/ extend)	Reference
F. graminearum	Fg16F Fg16R	CTCCGGATATGTTGCGTCAA GGTAGGTATCCGACATGGCAA	400-500	60°C/60 s	Nicholson <i>et al</i> . (1998)
F. culmorum	OPT18F OPT18R	GATGCCAGACCAAGACGAAG GATGCCAGACGCACTAAGAT	472	59°C/30 s	Schilling <i>et al</i> . (1996)
F. avenaceum	FA-F FA-R	GCTAATTCTTAACTTACTAGGGGCC CTGTAATAGGTTATTTACATGGGCG	272	60°C/30 s	Schilling <i>et al</i> . (1996)
F. poae	Fp82-F Fp82-R	CAAGCAAACAGGCTCTTCACC TGTTCCACCTCAGTGACAGGTT	220	61°C/30 s	Parry and Nicholson (1996)

Table 1. Primer sequences, product sizes and annealing temperatures used for PCR identification of Fusarium species

Macrogen (South Korea). Amplification products were separated by electrophoresis (90 V, 60 mA, 100 W, 30 min) in 1% agarose gels in 1 TAE (Tris-acetate-EDTA) buffer and visualized by SYBR Green staining on a UV gel documentation system.

Standard germination test

The standard germination test of wheat seeds was assessed using the rolled paper towel method (Warham 1990). This method was employed to determine the effect of seed-borne pathogen inoculum on seed quality parameters of wheat i.e. to carry out germination and vigor tests. Briefly, 400 seeds, randomly taken from each sample, were selected and placed between a pair of moist paper towels, with 25 seeds per row. Then, these seeds were covered with another moist paper and rolled carefully to avoid any excess pressure on seeds. Paper towels were placed individually in plastic bags and the bags were sealed with an elastic band. These towels were incubated at $20 \pm 1^{\circ}$ C in 16/8 h light/dark photoperiod with 70% moisture for 7 days. Seeds were visually assessed according to the ISTA rules (ISTA 2013). After a 7 day incubation period, the germination percentage, normal and abnormal seedlings, shoot and root lengths, fresh and dry weights were determined by placing them in an oven for 24 h at 75°C). Also, seedling length vigor index (SLVI) and seedling weight vigor index (SWVI) relations were determined by the following equations (Nautiyal et al. 2009):

 $SLVI = (mean of shoot length + mean of root length) \times \times percentage of seed germination,$

```
SWVI = dry weight seedling ×
× percentage of seed germination.
```

Location of Fusarium spp. in wheat seed

The location of *Fusarium* spp. in wheat seed was studied by employing the component plating technique (Maden *et al.* 1975). Naturally infected wheat seed samples were used for the study. Twenty seeds were washed four times with tap water, surface sterilized in 1% sodium hypochlorite for 3 min. These seeds were again washed with sterile water and soaked in water for 60 min and then the seeds were dissected aseptically using a sterile needle and forceps. The separated seed parts viz., seed coat and embryo were plated immediately before drying on PDA plates. The plates were incubated at $25 \pm 1^{\circ}$ C for 7 days. Then, they were examined under a stereo-binocular microscope for the presence of *Fusarium* spp. in different seed parts. The infection level of each part was evaluated according to the following formula (Mahmoud *et al.* 2013):

Infection level =

$$\left(\frac{\text{Total number of infected seed parts}}{\text{Total number of seed parts}}\right) \times 100 \,[\%]$$

Plant materials

Spring wheat cultivar (cv.) Falat, which is known as being susceptible to FHB (Soltanloo *et al.* 2011), obtained from the Seed and Plant Improvement Institute of Karaj, Iran, was used for pathogenicity tests. The seeds were surface sterilized with 1% sodium hypochlorite for 1 min, rinsed three times with sterile distilled water and incubated for 5 days on wet sterile filter paper in Petri dishes at 25°C. Germinated seeds were sown in each of the 15 cm-diameter plastic pots filled with sterile potting soil, which had been autoclaved at 121°C for a minimum of 30 min at 100 kPa (15 psi) on 2 successive days and grown in a greenhouse ($28 \pm 4^{\circ}$ C; 16/8 h light/dark photoperiod). The soil used in this experiment was a combination of peat moss, vermiculite and perlite at the ratio of 2 : 1 : 1 (v/v/v).

Inoculum preparation

Fungal inocula were produced on Mung Bean Broth (MBB) and Synthetic Nutrient Agar (SNA) media as

described by Zhang *et al.* (2013) and Koch *et al.* (2013), respectively. Conidial suspensions were diluted to a final concentration of 1×10^5 conidia \cdot ml⁻¹ containing 0.05 % (v/v) Tween 20.

Pathogenicity test

In the greenhouse experiments, the pathogenicity test of Fusarium isolates on wheat spikes was investigated using the method described by Yoshida et al. (2007). At the flowering stage (ZGS 64 to 65), 10 ml of spore suspension (1 \times 10⁵ conidia \cdot ml⁻¹) amended with Tween 20 was sprayed onto the spikes of each plant. The inoculated plants were incubated overnight in a greenhouse at 18-25°C, with 100% humidity. Then, the plants were placed in a plastic bag for 3 days to maintain high relative humidity. Control plants were treated only with sterile distilled water. Inoculated wheat heads were evaluated after 10 days and the FHB disease severity was estimated. Disease severity was measured as the percentage of infected spikelet(s) within the spike using a 0 to 5 scale (0 = no disease,1 = to 20%, 2 = to 40%, 3 = to 60%, 4 = to 80% and 5 = more than 80% disease severity) (Wan *et al.* 1997) and the FHB index was calculated as described previously (Amarasinghe et al. 2013). Each test had ten replicates arranged in a completely randomized design, and the experiment was repeated three times.

In the detached leaf bioassay, 4-cm long segments from the mid-section were prepared from the apical leaves of 4-week old wheat plants. Each leaf segment was placed adaxial surface uppermost on the surface of 0.5% water agar as described by Browne and Cooke (2004). Leaf segments were inoculated at the center of the adaxial surface with 5 µl inoculum suspension of 1×10^5 conidia \cdot ml⁻¹. Control leaf segments were inoculated using a drop of sterile distilled water without the fungus. Petri dishes were incubated at 25°C with a 12/12 h light/dark cycle. After 5 days, the length of necrotic lesions was measured. The test included four replicates for each isolate and the experiment was repeated three times.

Assessment of aggressiveness

The aggressiveness of each isolate of *Fusarium* spp. on seedlings and detached leaves was determined using the method described by Khaledi *et al.* (2017). Analysis of aggressiveness was based on determining hours post inoculation (hpi) for disease symptom appearance.

Statistical analysis

All experiments were set up in a completely randomized design. The data were analyzed by one-way analysis of variance (ANOVA) and comparison of means was carried out using the least significant difference (LSD) at the level of p < 0.05. Statistical analysis was performed using PROC GLM in SAS software version 9.2 (SAS Institute Inc., Cary, NC, USA).

Results

Morphological and molecular identification of *Fusarium* isolates

In this study, a total of 453 Fusarium isolates were recovered from different locations of pre-basic seeds wheat fields after harvest in 2016-2017. All isolates were classified into four species based on morphological criteria using the keys for Fusarium species identification of Starkey et al. (2007) and Leslie and Summerell (2006). Based on morphological characters of conidia, chlamydospores and conidiophores, Fusarium isolates were identified which belonged to four species (Table 2, Fig. 2). Fusarium graminearum Schwabe was the most common species, recovered from 92.9% of the seeds tested, and represented 70.9% of the seedborne Fusarium pathogen population. Fusarium culmorum (W.G. Smith) Sacc., F. avenaceum (Corda: Fr.) Sacc., and F. poae (Peck) Wollenw. were less common and were recovered from 50.6, 25.9, and 5.8% of the seeds and represented 21.2, 5.9 and 1.9% of the pathogen population, respectively. Morphological observations showed that the length of macroconidia ranged from 24 to 72 µm for F. graminearum (Figs 2A-B), 37 to 55 µm for *F. culmorum* (Fig. 2C), 44 to 70 µm for F. avenaceum (Figs 2D–E), and 36 to 47 µm for F. poae (Fig. 2F).

Molecular identification of the selected isolates was further confirmed using species-specific primers. Species-specific PCR assay was performed on the genomic DNA of the selected isolate. The list of PCR primers used to identify *Fusarium* species is presented in Table 1. The results of PCR confirmed morphological identification of *Fusarium* isolates and proved that the isolates were properly identified as *F. graminearum*, *F. culmorum*, *F. avenaceum* and *F. poae*.

Distribution, frequency and density of isolates

Fusarium-infected seeds were observed in 79 of 85 sampling seeds grown in different regions of pre-basic seed fields. Among different wheat samples of various cultivars in the investigated provinces, Ardebil farms showed the highest distribution of *Fusarium* isolates. *Fusarium graminearum* was detected in all sampling regions except WHSH499, WHSH501, WHSH502, WHSH503, WHSH520 and WHSH556 samples. *Fusarium graminearum, F. culmorum* and *F. avenaceum*

			0				Macrocor	nidia	
Name of the species	Pigmentation on PDA	Growth rate	Chlamydospore	Sporodochium	Microconidia	number of septa	apical cell	basal cell	size [µm]
Fusarium graminearum	vary from white to pale pink to red	R	+	pale orange	_	5–7	tapered	Fs	24-72 × 4-7
F. culmorum	red	R	+	orange to brown	-	3–4	rounded and blunt	Nfs	37-55 × 4-7
F. avenaceum	yellow	S	-	tan to orange	+	3–4	tapered to pointed	Nfs	44-70 × 3-4
F. poae	red	S	+	tan to pale orange	+	3	curved	Fs	36-47 × 3-5

 Table 2. Morphological characters of Fusarium spp. isolated from different locations in pre-basic seeds wheat (Triticum aestivum L.) fields

R = rapid, S = slow, "+" = presence, "-" = absence, Fs = foot shape, Nfs = notched and without a distinct foot shape

Fig. 2. Morphological characters of *Fusarium* species: macroconidium isolate FHB1 of *F. graminearum* (A), macroconidium isolate FHB84 of *F. graminearum* (B), macroconidium isolate FHB22 of *F. culmorum* (C), macroconidium isolate FHB29 of *F. avenaceum* (D), macroconidium isolate FHB100 of *F. avenaceum* (E), macroconidium isolate FHB66 of *F. poae* (F), chlamy-dospores isolate FHB76 of *F. graminearum* (G), chlamydospores isolate FHB80 of *F. culmorum* (H), microconidia FHB94 of *F. poae* (I) (scale bars = 10 μ m). Photographs were taken under a microscope (Olympus BX51) at 400× magnification

were detected from different fields of Golestan, Ardebil, Mazandaran provinces, while *F. poae* was detected only from Golestan province, Iran. In our study, the highest and lowest incidences of *Fusarium* spp. were observed in samples from Ardebil and Mazandaran provinces, respectively. Approximately 5.32% of the analysed seeds were contaminated by four *Fusarium* spp. Among the isolates, *F. graminearum* was the predominant species with the highest incidence, frequency and relative density of 3.8, 92.9 and 70.9%, respectively (Fig. 1).

Germination and vigor indices of wheat seeds

The germination percentages, normal and abnormal seedling, seedling vigor index, shoot and root lengths, fresh weight and dry weight as affected by natural infection are shown in Table 3. The seed germination percentage varied from 87.75 to 100% in all samples. Standard germination results showed that the percentage of normal seedlings was greater than 93.75%; however, the percent of abnormal seedlings was less than 6.25% for all samples. The SLVI and SWVI of the seedlings varied from 3,400 to 1,601.4 and from 28.85 to 12.1, respectively. Samples WHM0129 (belonging to Golestan province) showed the lowest vigor index.

Among cultivars, there were significant differences in the shoot and root lengths, fresh weights and dry weights (Table 3). The shoot and root lengths of the seedlings varied from 16.75 to 9 cm and from 18 to 9.25 cm, respectively. The fresh and dry weights of the seedlings varied from 2.9 to 1.8 g and from 0.28 to 0.14 g, respectively. The lowest seed germination, shoot and root lengths, fresh and dry weights were observed on samples WHM0129 (belonging to Golestan province).

Location of Fusarium spp. in wheat seed

The incubation of seeds without coats allowed the internal development of *Fusarium* spp. The location of *Fusarium* spp. in the seed was studied by employing the component plating technique and the results are presented in Table 4. A high percentage of *F. graminearum* was noticed in seed coats and a lower degree of infection in embryos. *Fusarium avenaceum* and *F. poae* were located in seed coats. Only *F. graminearum* was recorded in embryos of seeds at low frequency (Table 4).

Pathogenicity and aggressiveness assays

Comparison of the data obtained from inoculation of *Fusarium* isolates on wheat seedlings, wheat spikes and leaf segments revealed significant differences in the pathogenicity of the different *Fusarium* isolates (Table 5). The pathogenicity test revealed that 103 *Fusarium* isolates were found to be pathogenic or weakly pathogenic and the others were not pathogenic. Significant differences in Fusarium head blight index (FHB index) and leaf lesion length were observed among isolates tested.

The pathogenicity test on wheat spikes showed that the FHB index of pathogenic and weakly pathogenic isolates ranged from 19.5 ± 0.28 to 1.5 ± 0.28 . The highest FHB index was observed for isolate FHB1 of *F. graminearum* with an average DI of 32.75 ± 0.25 . Isolates FHB35 of *F. graminearum*, FHB37 of *F. graminearum* and FHB46 of *F. graminearum* were weakly pathogenic and showed the lowest disease progress among all *Fusarium* isolates.

Leaf assay revealed that the average lesion length of pathogenic and weakly pathogenic isolates ranged from 19.5 ± 0.28 to 1.5 ± 0.28 mm. The longest lesion length was produced by the FHB1 isolate of *F. graminearum* and the shortest lesion length was produced by FHB35 isolates of *F. graminearum* and FHB46 of *F. graminearum*, respectively. The results of the aggressiveness test on wheat spikes and detached-leaves showed earlier development of disease symptoms by isolate FHB1 of *F. graminearum* than other isolates tested (Table 5, Fig. 3).

Discussion

In this study, a total of 453 *Fusarium* spp. isolates obtained from pre-basic seeds wheat fields were identified using molecular and morphological characters. Morphological identification was confirmed using a set of species-specific primers. This is the first detailed identification of seed-borne *Fusarium* species and their frequency in pre-basic seeds wheat fields in Iran. Furthermore, the location of *Fusarium* spp. in seeds was determined. Also, we evaluated the effect of *Fusarium* spp. on germination and vigor indices of wheat seeds.

Based on morphological observations and molecular analyses, all isolates belonging to four *Fusarium* species were isolated from wheat seed samples. Three hundred and 21 isolates were identified as *F. graminearum*, 96 isolates as *F. culmorum*, 27 isolates as *F. avenaceum* and 9 isolates as *F. poae*. The results of morphological and molecular identification of *Fusarium* species were in accordance with the reports of Abedi--Tizaki and Sabbagh (2012) and Khaledi *et al.* (2017).

The Fusarium species causing FHB were observed in different regions of sampling. Only 7% of the samples were found to be unaffected. Golestan had the highest percentage of infected samples. It is possible that cultures of the sensitive varieties, climate conditions and crop rotation with maize and rapeseed cause the prevalence of FHB in regions. The main species associated with FHB in wheat in Iran is F. graminearum as suggested by previous studies (Abedi-Tizaki and Sabbagh 2012; Davari et al. 2013; Khaledi et al. 2017). Mobasser et al. (2012) reported that 42.89% of the isolates recovered from wheat seeds in Iran belong to F. graminearum, which is in accordance with our data. Similar results were obtained in Pakistan (Bhatti and Bhutta 2002), India (Pathak and Zaidi 2012) and Serbia (Lević et al. 2012).

The study revealed that *F. graminearum* and *F. culmorum* were the most frequent species (70.9 and 21.2%,

Sample code	Sample name	Cultivar/ line	Sample site	GP	AS	SL	RL	FW	DW	SLVI	SWVI	NFI
1	WHM0144	N-91-9	Golestan	95.0	3.2	13.0	14.7	2.5	0.24	2636.2	23.3	5
2	WHM0145	N-91-8	Golestan	92.2	5.2	10.6	12.7	2.4	0.23	2156.3	21.5	9
3	WHM0135	N-91-17	Golestan	95.2	3.0	13.1	15.4	2.6	0.24	2714.6	23.3	5
4	WHM0136	Qaboos	Golestan	100.0	0.5	14.6	16.8	2.8	0.27	3150.0	28.1	2
5	WHM0137	Aftab	Golestan	100.0	0.0	15.4	17.6	2.8	0.27	3300.0	26.6	1
6	WHM0138	Kohdasht	Golestan	91.7	5.2	10.6	10.7	2.1	0.20	1961.2	18.2	10
7	WHM0139	Karim	Golestan	94.2	4.7	12.2	14.2	2.6	0.24	2497.6	21.9	9
8	WHM0140	Line 17	Golestan	100.0	0.5	14.5	17.2	2.8	0.27	3175.0	26.4	2
9	WHM0141	Morvarid	Golestan	98.5	2.7	13.6	15.9	2.8	0.27	2905.7	26.2	4
10	WHM0142	N-87-20	Golestan	95.0	3.5	12.9	15.0	2.6	0.24	2648.1	22.4	5
11	WHM0143	N-91-17	Golestan	95.0	3.2	13.3	15.2	2.6	0.24	2695.6	22.8	5
12	WHM0127	Kohdasht	Golestan	89.7	5.7	10.2	10.2	1.8	0.16	1828.7	13.8	14
13	WHM0128	Line 17	Golestan	92.0	5.0	10.6	11.9	2.1	0.21	2070.0	20.1	11
14	WHM0129	Karim	Golestan	87.7	6.2	9.0	9.25	1.8	0.14	1601.4	12.1	19
15	WHM0130	Qaboos	Golestan	90.7	5.0	10.5	10.5	1.9	0.16	1905.7	14.85	12
16	WHM0131	N-87-20	Golestan	99.5	2.0	14.1	16.5	2.8	0.27	3047.2	26.5	3
17	WHM0132	Morvarid	Golestan	95.2	3.2	13.2	15.5	2.6	0.26	2738.4	23.7	7
18	WHM0133	N-91-8	Golestan	94.5	4.5	12.8	14.5	2.6	0.23	2586.9	22.1	8
19	WHM0134	N-91-9	Golestan	94.0	5.0	12.2	14.1	2.66	0.24	2479.2	22.1	10
20	WHM013	N-92-9	Mazandaran	94.2	4.5	13.0	14.7	2.6	0.24	2615.4	23.4	8
21	WHM03	N-92-9	Mazandaran	94.0	5.0	12.2	14.2	2.6	0.23	2491.0	22.2	9
22	WHM010	N-91-8	Mazandaran	94.5	4.0	13.2	15.0	2.6	0.24	2669.6	23.8	8
23	WHM05	N-92-9	Mazandaran	99.2	1.5	14.2	16.6	2.8	0.27	3064.3	27.3	3
24	WHM06	N-92-19	Mazandaran	95.2	2.5	13.6	15.6	2.7	0.26	2786.1	24.8	4
25	WHM01	Gonbad	Mazandaran	98.5	2.0	14.0	16.1	2.7	0.27	2967.3	25.8	4
26	WHM04	N-87-20	Mazandaran	95.0	3.0	13.2	15.5	2.6	0.26	2731.2	24.2	5
27	WHM07	N-91-17	Mazandaran	92.5	5.0	12.2	14.2	2.5	0.23	2451.2	21.4	9
28	WHM011	Gonbad	Mazandaran	99.0	1.5	14.2	16.5	2.8	0.27	3044.2	26.5	5
29	WHM015	N-91-9	Mazandaran	99.7	1.0	15.2	16.8	2.8	0.28	3204.4	27.1	3
30	WHM02	Morvarid	Mazandaran	93.5	5.0	12.2	14.25	2.6	0.23	2477.7	21.8	10
31	WHM014	N-87-20	Mazandaran	100.0	1.0	15.3	16.8	2.8	0.28	3225.0	27.5	2
32	WHM016	N-92-19	Mazandaran	94.5	4.5	13.0	14.7	2.6	0.24	2622.4	23.8	7
33	WHM012	Morvarid	Mazandaran	99.2	1.5	14.2	16.6	2.8	0.27	3064.3	27.2	6
34	WHSH497	Homa	Ardebil	99.7	0.5	15.7	16.2	2.8	0.28	3192.0	25.7	3
35	WHSH498	Homa	Ardebil	97.7	1.0	14.2	15.5	2.7	0.26	2908.1	28.6	5
36	WHSH499	Azar 2	Ardebil	100.0	0.0	16.0	18.0	2.9	0.28	3400.0	28.1	0
37	WHSH500	Azar 2	Ardebil	100.0	0.0	16.0	17.7	2.8	0.28	3375.0	28.2	1
38	WHSH501	Baran	Ardebil	100.0	0.0	16.0	18.0	2.9	0.29	3400.0	25.5	0
39	WHSH502	Baran	Ardebil	100.0	0.0	16.0	18.0	2.8	0.28	3400.0	28.7	0
40	WHSH503	Saein	Ardebil	100.0	0.0	16.0	18.0	2.8	0.28	3400.0	28.5	0
41	WHSH504	Saein	Ardebil	100.0	0.5	15.9	16.6	2.8	0.27	3250.0	28.5	3
42	WHSH505	Rasad	Ardebil	98.0	0.7	14.0	15.8	2.7	0.26	2927.8	28.8	6
43	WHSH506	Rasad	Ardebil	98.5	0.7	14.0	16.0	2.7	0.26	2955.0	28.5	5
44	WHSH507	Azar 2	Ardebil	100.0	0.0	16.0	17.8	2.8	0.29	3387.5	28.4	1

Table 3. Continuation

Sample code	Sample name	Cultivar/ line	Sample site	GP	AS	SL	RL	FW	DW	SLVI	SWVI	NFI
45	WHSH508	Azar 2	Ardebil	100.0	0.5	15.8	17.5	2.8	0.27	3337.5	28.0	1
46	WHSH515	Orum	Ardebil	98.5	0.7	14.0	15.8	2.7	0.26	2942.7	28.5	4
47	WHSH516	Mihan	Ardebil	97.7	1.2	14.0	15.8	2.7	0.26	2920.3	28.8	5
48	WHSH517	Heydari	Ardebil	97.0	2.7	13.1	15.5	2.6	0.25	2776.6	27.8	7
49	WHSH518	Gaskogen	Ardebil	99.2	0.7	15.4	16.1	2.8	0.27	3126.4	28.0	6
50	WHSH519	Pishgam	Ardebil	95.5	3.0	13.2	15.1	2.6	0.24	2709.8	28.3	7
51	WHSH520	Saysoniz	Ardebil	100.0	0.0	16.0	18.0	2.8	0.28	3400,0	28.6	0
52	WHSH528	Zagros	Ardebil	96.5	2.7	13.5	15.3	2.6	0.25	2786.4	28.8	6
53	WHSH529	Gaskogen	Ardebil	100.0	0.2	15.9	17.5	2.8	0.27	3337.5	28.8	1
54	WHSH530	Shiroudi	Ardebil	94.2	4.5	13.0	14.6	2.6	0.24	2603.6	28.4	9
55	WHSH531	Karim	Ardebil	97.5	1.2	14.1	15.5	2.71	0.27	2888.4	28.1	6
56	WHSH532	N-91-17	Ardebil	96.2	2.7	13.4	15.2	2.6	0.24	2755.1	28.6	6
57	WHSH533	Kohdasht	Ardebil	97.5	1.5	13.9	15.5	2.7	0.26	2864.0	25.3	7
58	WHSH534	Gonbad	Ardebil	95.7	2.7	13.2	15.1	2.6	0.24	2716.9	25.5	6
59	WHSH535	Dehdasht	Ardebil	94.7	3.7	13.1	14.9	2.6	0.24	2653.0	23.8	9
60	WHSH536	N-87-20	Ardebil	99.7	0.5	15.6	16.25	2.8	0.27	3179.5	28.9	5
61	WHSH537	Qaboos	Ardebil	99.0	0.5	15.4	16.1	2.8	0.27	3118.5	23.6	5
62	WHSH538	Zagros	Ardebil	91.7	5.0	10.5	11.7	2.1	0.20	2041.4	25.6	8
63	WHSH539	Qaboos	Ardebil	96.7	3.0	12.8	15.4	2.5	0.25	2733.2	25.8	7
64	WHSH540	Saysoniz	Ardebil	98.7	0.7	14.0	16.0	2.7	0.27	2962.5	28.6	3
65	WHSH541	Morvarid	Ardebil	100.0	0.2	15.8	17.4	2.8	0.28	3325.0	28.7	2
66	WHSH542	Morvarid	Ardebil	100.0	0.0	16.0	18.0	2.8	0.28	3400.0	28.5	1
67	WHSH543	N-87-20	Ardebil	100.0	0.5	15.8	17.5	2.8	0.27	3337.5	28.0	2
68	WHSH544	N-91-8	Ardebil	95.5	2.7	13.2	15.0	2.6	0.24	2697.8	28.9	6
69	WHSH545	N-91-9	Ardebil	97.2	1.5	13.8	15.5	2.7	0.26	2856.7	27.9	5
70	WHSH546	Zagros	Ardebil	97.2	1.5	13.8	15.5	2.7	0.26	2856.7	28.9	6
71	WHSH547	N-91-9	Ardebil	98.7	0.7	14.0	16.0	2.7	0.27	2962.5	28.9	4
72	WHSH548	Aftab	Ardebil	99.7	0.5	15.6	16.2	2.8	0.28	3179.5	28.7	3
73	WHSH549	Kohdasht	Ardebil	95.5	2.7	13.2	15.0	2.6	0.24	2697.9	28.9	6
74	WHSH550	Gonbad	Ardebil	92.0	5.0	10.6	11.8	2.1	0.21	2070.0	28.6	9
75	WHSH551	Morvarid	Ardebil	97.7	1.2	14.0	15.8	2.7	0.27	2920.3	28.6	6
76	WHSH552	N-91-17	Ardebil	94.7	4.0	13.0	14.8	2.6	0.24	2641.1	27.5	8
77	WHSH553	N-91-8	Ardebil	95.5	2.7	13.2	15.0	2.6	0.24	2697.8	27.8	9
78	WHSH554	Karim	Ardebil	97.7	1.25	14.0	16.0	2.7	0.26	2932.5	27.5	4
79	WHSH555	Kohdasht	Ardebil	99.7	0.5	15.3	16.2	2.84	0.27	3154.5	27.8	3
80	WHSH556	Chamran	Ardebil	100.0	0.0	16.0	18.0	2.8	0.28	3400.0	28.6	0
81	WHSH557	N-91-8	Ardebil	96.7	3.0	12.85	15.3	2.5	0.24	2733.2	28.7	7
82	WHSH558	Dehdasht	Ardebil	100.0	0.5	15.1	17.0	2.8	0.27	3212.5	25.8	3
83	WHSH559	N-87-20	Ardebil	100.0	0.5	15.8	17.3	2.8	0.27	3325.0	27.5	2
84	WHSH560	N-91-9	Ardebil	99.7	0.7	15.8	16.2	2.8	0.27	3204.4	27.8	4
85	WHSH561	Mihan	Ardebil	96.5	3.0	13.3	15.2	2.6	0.24	2762.3	23.9	7
LSD (0.05)				0.7	0.5	0.3	0.4	0.03	0	64.8	0.7	

GP = germination percent, AS = abnormal seedling, SL = shoot length, RL = root length, FW = fresh weight, DW = dry weight, SLVI = seedling length vigor index, SWVI = seedling weight vigor index and NFI = number of *Fusarium* isolates. Each experiment was repeated two times with similar results

Table 4. Location of *Fusarium* species in the different seed parts of wheat

Fue arium en esies	Seed component				
rusarium species	seed coat*	embryo*			
F. graminearum	70.0 a	1.7 a			
F. culmorum	18.3 b	0 b			
F. avenaceum	3.3 c	0 b			
F. poae	1.7 d	0 b			

*infection level [%]

Different letters indicate significant differences according to LSD analysis using SAS software (p = 0.05). Each experiment was repeated two times with similar results

respectively), with high (3.8%) and moderate incidence (1.1%), and with relative densities of 92.9 and 50.6%, respectively, on wheat seeds. Our data were in accordance with observations of Zare *et al.* (2006), Hajihasani *et al.* (2012) and Mobasser *et al.* (2012). Khazaei *et al.* (2014) reported that the average infection level of

F. graminearum, F. culmorum, F. avenaceaum, F. poa was 46.54% from wheat seed loads in Iran.

In this study, 5.3% incidences of *Fusarium* spp. infection were recorded in pre-basic seeds wheat fields of all provinces. Overall, the highest incidence of *Fusarium* spp. was observed in Ardebil province, followed by Golestan and Mazandaran provinces. It was shown that the frequency and relative density of *Fusarium* species on all cultivars highly varied from region to region and within the region, from variety to variety. These findings were in accordance with the results obtained by Haratian *et al.* (2008) and Davari *et al.* (2013).

Research has shown that several biotic factors, intrinsic to the seed and/or interactions with other organisms, pests, pathogens and abiotic factors can delay, reduce or prevent germination (Baskin and Baskin 1998; Souza *et al.* 2015). Environmental factors such as pH, constant temperature, osmotic stress, salt stress, dry storage, light, and soil moisture are known to affect seed germination (Koger *et al.* 2004; Zhou *et al.* 2005). Biotic stresses such as seed-borne and soil-

Fig. 3. Disease symptoms on leaf segments by isolate FHB16 of *Fusarium culmorum* (A), isolate FHB1 of *F. graminearum* (B), isolate FHB2 of *F. graminearum* (C), isolate FHB99 of *F. graminearum* (D), isolate FHB84 of *F. graminearum* (E), isolate FHB25 of *F. graminearum* (F), and control, isolates FHB53, FHB18, FHB30, FHB1, FHB44, FHB32 and FHB3 of *F. graminearum*, isolate FHB63 of *F. culmorum*, isolate FHB69 of *F. avenaceum* and isolate FHB94 of *F. poae* (G)

			Pathogenicity and aggressiveness analysis							
Isolate	Sample		le	eaf	spike					
code	name	PCR	pathogenicity [LL, mm]	aggressiveness [hpi]	pathogenicity [FHB index]	aggressiveness [hpi]				
FHB1	WHM0138	F. graminearum	19.5 ± 0.28 a	71	32.75 ± 0.25 a	119				
FHB2	WHM0142	F. graminearum	17 ± 0 b	74	28 ± 0 c	123				
FHB3	WHM0131	F. graminearum	$15 \pm 0 d$	78	26.75 ± 0.25 d	124				
FHB4	WHM03	F. graminearum	14 ± 0 e	79	24.75 ± 0.25 f	125				
FHB5	WHM07	F. graminearum	14.75 ± 0.25 d	78	24.75 ± 0.25 f	124				
FHB6	WHSH532	F. graminearum	14 ± 0 e	79	24.25 ± 0.25 g	125				
FHB7	WHSH538	F. graminearum	14.75 ± 0.25 d	78	24.75 ± 0.25 f	124				
FHB8	WHSH553	F. graminearum	15 ± 0 d	78	25 ± 0 f	124				
FHB9	WHM0145	F. graminearum	14.75 ± 0.25 d	79	24.75 ± 0.25 f	124				
FHB10	WHSH561	F. graminearum	14 ± 0 e	79	24.25 ± 0.25 g	125				
FHB11	WHM0139	F. avenaceum	8 ± 0 l	100	19 ± 0 lm	167				
FHB12	WHSH504	F. graminearum	9 ± 0 k	99	20 ± 0 k	127				
FHB13	WHM015	F. graminearum	10 ± 0 j	97	21 ± 0 j	127				
FHB14	WHM03	F. culmorum	13 ± 0 f	96	23 ± 0 h	126				
FHB15	WHM0130	F. graminearum	11 ± 0 i	97	22.25 ± 0.25 i	128				
FHB16	WHM02	F. culmorum	11 ± 0 i	97	22.25 ± 0.25 i	128				
FHB17	WHM0143	F. graminearum	$13 \pm 0 f$	96	24.75 ± 0.25 f	126				
FHB18	WHM0135	F. graminearum	10 ± 0 j	97	21 ± 0 j	128				
FHB19	WHM0128	F. avenaceum	9 ± 0 k	99	19 ± 0 lm	167				
FHB20	WHSH559	F. graminearum	14 ± 0 e	79	24.75 ± 0.25 f	125				
FHB21	WHSH544	F. graminearum	$13 \pm 0 f$	96	23 ± 0 h	126				
FHB22	WHSH539	F. culmorum	$13 \pm 0 f$	96	23 ± 0 h	126				
FHB23	WHSH540	F. graminearum	9 ± 0 k	99	18.75 ± 0.25 m	168				
FHB24	WHM012	F. graminearum	12 ± 0 g	96	23 ± 0 h	128				
FHB25	WHM02	F. graminearum	9 ± 0 k	99	19 ± 0 lm	167				
FHB26	WHSH550	F. culmorum	7 ± 0 m	101	17.25 ± 0.25 no	168				
FHB27	WHSH536	F. graminearum	10 ± 0 j	97	21 ± 0 j	128				
FHB28	WHM04	F. graminearum	11.5 ± 0.28 h	96	22.25 ± 0.25 i	126				
FHB29	WHSH553	F. avenaceum	$13 \pm 0 f$	96	24 ± 0 g	126				
FHB30	WHSH535	F. graminearum	14.75 ± 0.25 d	78	25 ± 0 f	124				
FHB31	WHSH551	F. graminearum	7 ± 0 m	101	17.75 ± 0.25 n	168				
FHB32	WHSH541	F. graminearum	4 ± 0 p	103	14 ± 0 q	191				
FHB33	WHM0130	F. culmorum	7 ± 0 m	101	17 ± 0 o	169				
FHB34	WHSH560	F. graminearum	3 ± 0 q	104	12 ± 0 s	192				
FHB35	WHSH547	F. graminearum	1.5 ± 0.28 r	120	8 ± 0 w	195				
FHB36	WHM010	F. graminearum	2.75 ± 0.25 q	104	9.75 ± 0.25 uv	193				
FHB37	WHM0128	F. graminearum	2.75 ± 0.25 q	104	8 ± 0 w	194				
FHB38	WHSH529	F. graminearum	3 ± 0 q	104	13 ± 0 r	191				
FHB39	WHSH528	F. graminearum	4.75 ± 0.25 o	101	15 ± 0 p	191				
FHB40	WHSH531	F. avenaceum	6 ± 0 n	102	17.25 ± 0.25 o	169				
FHB41	WHSH533	F. graminearum	7 ± 0 m	101	17.25 ± 0.25 o	168				
FHB42	WHSH561	F. culmorum	8 ± 0 I	99	18 ± 0 n	167				
FHB43	WHSH497	F. graminearum	5 ± 0 o	102	14.75 ± 0.25 p	191				
FHB44	WHSH544	F. araminearum	3 ± 0 a	104	12 ± 0 s	191				

Table 5. Pathogenicity and aggressiveness of Fusarium isolates on inoculated wheat spikes and leaf segments

		-						
Isolate Sample		e Species-specific _	le	af	spike			
code	name	PCR	pathogenicity	aggressiveness	pathogenicity	aggressiveness		
			[LL, mm]	[hpi]	[FHB index]	[hpi]		
FHB45	WHSH542	F. graminearum	2.75 ± 0.25 q	104	10.75 ± 0.25 t	193		
FHB46	WHM05	F. graminearum	1.5 ± 0.28 r	120	$8 \pm 0 w$	194		
FHB47	WHSH505	F. graminearum	4 ± 0 p	103	$13 \pm 0 r$	191		
FHB48	WHM014	F. graminearum	4.75 ± 0.25 o	101	14.75 ± 0.25 p	191		
FHB49	WHSH500	F. graminearum	3 ± 0 q	104	$13 \pm 0 r$	192		
FHB50	WHSH534	F. graminearum	2.75 ± 0.25 q	104	12 ± 0 s	192		
FHB51	WHM0136	F. graminearum	6 ± 0 n	102	17 ± 0 o	168		
FHB52	WHM011	F. graminearum	4.75 ± 0.25 o	102	$15 \pm 0 p$	191		
FHB53	WHM016	F. graminearum	7 ± 0 m	101	17.75 ±0.25 n	167		
FHB54	WHSH546	F. avenaceum	9 ± 0 k	99	19 ± 0 lm	168		
FHB55	WHM01	F. graminearum	$13 \pm 0 f$	96	$23 \pm 0 h$	126		
FHB56	WHSH543	F. graminearum	$15 \pm 0 d$	78	$25 \pm 0 f$	124		
FHB57	WHSH552	F. graminearum	$14 \pm 0 e$	79	24.25 ± 0.25 g	125		
FHB58	WHM0129	F. culmorum	$6.75 \pm 0.25 \text{ m}$	101	17.25 ± 0.25 o	167		
FHB59	WHSH557	F. graminearum	4.75 ± 0.25 o	102	14.75 ± 0.25 p	191		
FHB60	WHM0140	F. graminearum	$3.25\pm0.25~\textrm{q}$	103	14 ± 0 q	191		
FHB61	WHSH498	F. graminearum	3 ± 0 q	104	$9.75\pm0.25~\text{uv}$	193		
FHB62	WHSH534	F. graminearum	$2.75 \pm 0.25 \ q$	104	$9.75\pm0.25~\text{uv}$	193		
FHB63	WHSH506	F. culmorum	3 ± 0 q	104	$9.75 \pm 0.25 uv$	193		
FHB64	WHM0141	F. graminearum	$2.75 \pm 0.25 \ q$	104	$9.5\pm0.28v$	193		
FHB65	WHSH548	F. graminearum	$3\pm0q$	104	14 ± 0 q	191		
FHB66	WHM0127	F. poae	6 ± 0 n	102	15 ± 0 p	191		
FHB67	WHSH554	F. graminearum	8 ± 0 l	99	19.25 ± 0.25 l	167		
FHB68	WHM07	F. graminearum	$10\pm0j$	97	21.25 ± 0.25 j	126		
FHB69	WHSH552	F. avenaceum	12 ± 0 g	96	23 ± 0 h	126		
FHB70	WHM0131	F. graminearum	$14 \pm 0 e$	79	$24.75 \pm 0.25 \text{ f}$	124		
FHB71	WHSH545	F. graminearum	8 ± 0 l	99	18 ± 0 n	167		
FHB72	WHSH517	F. culmorum	$10\pm0j$	97	$20\pm0~k$	127		
FHB73	WHM0134	F. graminearum	6.75 ± 0.25 m	101	17 ± 0 o	168		
FHB74	WHSH519	F. graminearum	4 ± 0 p	103	$14 \pm 0 q$	191		
FHB75	WHSH515	F. graminearum	2.75 ± 0.25 q	104	9.75 ± 0.25 uv	193		
FHB76	WHSH498	F. graminearum	2.75 ± 0.25 q	104	$9.5 \pm 0.28 \text{ v}$	193		
FHB77	WHM0130	F. graminearum	2.75 ± 0.25 q	104	9.75 ± 0.25 uv	193		
FHB78	WHSH519	F. graminearum	3 ± 0 q	104	14.75 ± 0.25 p	176		
FHB79	WHSH528	F. graminearum	5 ± 0 o	102	14.75 ± 0.25 p	175		
FHB80	WHM013	F. culmorum	5 ± 0 o	102	14.75 ± 0.25 p	175		
FHB81	WHM0137	F. graminearum	8 ± 0 l	99	17.75 ± 0.25 n	167		
FHB82	WHSH549	F. graminearum	10.75 ± 0.25 i	96	21 ± 0 j	127		
FHB83	WHM0134	F. graminearum	$15 \pm 0 d$	78	25 ± 0 f	124		
FHB84	WHSH518	F. graminearum	17.25 ± 0.25 b	74	28.5 ± 0.28 b	121		
FHB85	WHSH555	F. graminearum	16 ± 0 c	76	26 ± 0 e	123		
FHB86	WHSH505	F. graminearum	$14 \pm 0 e$	79	24.75 ± 0.25 f	125		
FHB87	WHM0138	F. graminearum	14.75 ± 0.25 d	78	24.75 ± 0.25 f	124		
FHB88	WHM0132	F. graminearum	3 ± 0 q	104	14.75 ± 0.25 p	177		

	D 1 · ·			• •			<i>.</i> .	
I S I S I S E	Usthogopicity	nd addroccivionacc at	t Lucaruum icolato		1	kac and laa	troamontr	continuation
LADIE 3.			FUSUUUUUSOIALE			Kes and lea		
	i attrogeriterty a		i asanan isolace	5 011 1110 Cult	acco micac spi	ites arra rea	1 Segments	contraction
							<u> </u>	

		_	Pathogenicity and aggressiveness analysis						
Isolate	Sample	Species-specific	I	eaf	sp	ike			
code name		PCR	pathogenicity [LL, mm]	aggressiveness [hpi]	pathogenicity [FHB index]	aggressiveness [hpi]			
FHB89	WHSH530	F. graminearum	$2.75 \pm 0.25 \ q$	104	10 ± 0 u	193			
FHB90	WHSH516	F. graminearum	$2.75 \pm 0.25 \ q$	104	$9.5\pm0.28v$	193			
FHB91	WHSH532	F. graminearum	2.75 ± 0.25 q	104	10 ± 0 u	193			
FHB92	WHM0133	F. graminearum	4 ± 0 p	103	15 ± 0 p	176			
FHB93	WHSH557	F. graminearum	5 ± 0 o	102	15 ± 0 p	175			
FHB94	WHM0129	F. poae	6 ± 0 n	102	17.25 ± 0.25 o	169			
FHB95	WHSH537	F. graminearum	$8.25\pm0.25I$	98	17.75 ± 0.25 n	169			
FHB96	WHM0145	F. culmorum	10.75 ± 0.25 i	97	$21\pm0j$	127			
FHB97	WHSH508	F. graminearum	$13\pm0f$	96	24.25 ± 0.25 g	127			
FHB98	WHM06	F. graminearum	$14.5\pm0.28d$	78	$25\pm0f$	124			
FHB99	WHM0129	F. graminearum	$17 \pm 0 b$	74	28.25 ± 0.25 bc	121			
FHB100	WHM0144	F. avenaceum	$11.5 \pm 0.28 \text{ h}$	96	$22\pm0i$	126			
FHB101	WHSH558	F. graminearum	11 ± 0 i	96	$21\pm0j$	127			
FHB102	WHSH530	F. culmorum	$6.25 \pm 0.25 \text{ n}$	101	17.75 ± 0.25 n	168			
FHB103	WHSH507	F. graminearum	4.75 ± 0.25 o	102	15 ± 0 p	175			
LSD (0.05)			0.4		0.5				

Table 5. Continuation

hpi = hours post inoculation, LL = lesion length, FHB index = Fusarium head blight index; average \pm standard error; different letters indicate significant differences according to LSD analysis using SAS software (p = 0.05); each experiment was repeated two times with similar results

borne pathogens are known to affect seed germination (Lamichhane *et al.* 2018).

The germination ability of wheat seeds is one of the most important indicators of quality, viability and germination of wheat seed. In our study there was a significant negative impact of seed-borne Fusarium on germination and vigor indices of wheat seeds. As in previous in vitro assays of wheat (Browne and Cooke 2005; Browne 2007), a significant association between germination and Fusarium infection was observed in our study. According to the national seeds standard the minimal percentage of germination in pre-basic seeds wheat fields was reported to be 90%, which is less than the percentage of germination in our data, except WHM0127 and WHM0129 samples (Osroush 2010). Fusarium spp. infection in wheat seed causes decreased germination percentage. Similar results were obtained by Hare et al. (1999), who observed that reduced germination of seedlings of wheat was associated with infection by F. culmorum. Browne and Cooke (2005) reported that F. graminearum caused the greatest reduction with a mean seed germination of 61.7% relative to the controls followed by F. avenaceum (65.5%), F. culmorum (76.6%), and was least for F. poae (92.5%), which is in accordance with our observations.

The number of abnormal seedlings increased significantly in samples which contained more infected seeds. The standard germination in all the samples was 93.75% normal and 6.25% abnormal seedlings. We found that shoot and root lengths decreased with increased natural infection by *Fusarium* spp., however, the fresh and dry weights as well as the length of the seedlings tended to decrease compared to more infected seeds. The respiration of seeds and *Fusarium* spp. results in a loss in dry weight as well as the production of heat and moisture which contribute to further disease spread and postharvest losses. Numerous reports have indicated that germination and vigor indices were decreased due to increased *Fusarium*-infected seeds (Browne 2007; Franke *et al.* 2014), which is supported by our results. Browne (2007) reported that seed-borne *Fusarium* had a significantly negative relationship with seed weight and germination.

Some studies revealed the location activities of some fungal pathogens in seed coats, cotyledons, endosperms and embryonic axes (Dubey and Singh 2005; Thippeswamy *et al.* 2006; Nagaraja and Krishnappa 2016). The results showed that a higher infection level of *F. graminearum* most commonly occurred in the seed coat followed by the embryo (1.7%). Most *Fusarium* spp. were observed in the seed coat and cotyledon. Similar results were obtained by Mahmoud *et al.* (2013), who reported that *Fusarium* sp. were more active in the seed coat than in the embryo. Among the species of *Fusarium* detected in wheat seeds, only *F. graminearum* was observed in the embryo of seeds. This is in accordance with the observations of Geleta *et al.* (2005) who detected *F. graminearum* in the embryo of seeds.

The genus Fusarium has no specialized structures for penetration into plant cells and enters the host via natural openings or penetrates the epidermal cell walls directly with short infection-hyphae (Pritsch et al. 2000; Wanyoike et al. 2002). Fusarium spp. are able to penetrate and invade a host with the help of secreted cell wall degrading enzymes. Production of cell wall degrading enzymes also enables the pathogen to penetrate, grow and infect the plant tissue (Kikot et al. 2009). Aggressiveness and pathogenicity of Fusarium spp. involve different mechanisms such as production of extracellular enzymes and mycotoxins (Ortega et al. 2013; Khaledi et al. 2017). Various cell wall degrading enzymes such as cellulase, xylanase, pectinase and lipase could be produced by Fusarium spp. during infection of wheat spikes (Ortega et al. 2013). Mycotoxins such as trichothecenes, zearalenone and fumonisins have a significant role in determining the pathogenicity of Fusarium isolates (Purahong et al. 2013; Hernandez-Nopsa et al. 2014).

Fusarium isolates without the ability of producing trichothecenes were unable to cause severe disease in wheat tissues (Bai *et al.* 2002; Khaledi *et al.* 2017). According to other investigators, a strong association has been found between the severity of FHB and mycotoxin concentration (Wegulo 2012; Hernandez-Nopsa *et al.* 2014; Panthi *et al.* 2014). Trichothecenes are considered to be virulence factors during plant infection and are also associated with pathogen aggressiveness (Bai *et al.* 2002; Foroud and Eudes 2009; Pasquali and Migheli 2014). *Fusarium* isolates without the ability of producing trichothecenes were unable to cause severe disease in wheat tissues (Bai *et al.* 2002; Khaledi *et al.* 2017).

The results of our study about pathogenicity of *Fusarium* isolates on wheat spikes and leaf segments showed that isolates of *Fusarium* spp. were pathogenic or weakly pathogenic on wheat and differences in aggressiveness and pathogenicity were found. We found a correlation between aggressiveness and pathogenicity of *Fusarium* isolates. Our data are in accordance with observations of Khaledi *et al.* (2017), who found a correlation between virulence factors, aggressiveness and pathogenicity of *Fusarium* isolates on seedlings, spikes and leaves of wheat plants.

In our study about pathogenicity of *Fusarium* isolates on wheat spikes and leaf segments we saw differences in pathogenicity. One hundred and three (about 22.7%) of 453 isolates were pathogenic or weakly pathogenic in wheat (cv. Falat). The *Fusarium* isolates recovered from wheat seeds revealed differences in their pathogenicity in wheat cultivars. A detached leaf assay was used to pre-screen *Fusarium* isolates pathogenicity causing FHB in wheat cultivars. Results showed that 77.3% isolates of Fusarium spp. were found not to be pathogenic. Partial disease resistance components detected in the detached leaf assay have been correlated to FHB in wheat (Browne 2007; Shin et al. 2014). Wu et al. (2005) reported that leaf lesion length by Fusarium isolates was significantly correlated with FHB index of the same Fusarium isolates under field conditions. Overall, isolate FHB1 of F. graminearum caused the highest disease progress with an average FHB index of 32.75 ± 0.25 and leaf lesion length of 19.5 ± 0.28 . In our investigations, the aggressiveness of the Fusarium isolates varied as much within a species as among species. This is in accordance with the results obtained by Sakr (2017), Purahong et al. (2012) and Wu et al. (2005). Significant differences in pathogenicity were observed among the Fusarium spp. isolates, which is evidence of differences in aggressiveness. The highest variation in aggressiveness was observed among the F. graminearum isolates. Alvarez et al. (2010) reported high variation in aggressiveness among F. graminearum isolates from Argentina, which is in accordance with our data.

In summary, this study indicates that germination and vigor indices of wheat were significantly influenced with different seed contamination rates. Seed-borne Fusarium caused reduction in quality and germination of seed and, also, loss in seed viability. The data on the frequency and relative density of the fungal species on wheat is important for the application of strategy, which will reduce their incidence on wheat seeds. Certified and healthy seeds of wheat can contribute to food security in the world (Rahman et al. 2018), since they provide significant input for crop production and consequently avoid the reduction of yield and quality caused by seed-borne Fusarium. Knowledge about seed-borne Fusarium species associated with wheat and pathogenicity could be useful for management strategies to reduce destructive effects of FHB disease in seeds and increase the seed production of wheat.

Acknowledgements

The authors would like to acknowledge the financial support of the Seed and Plant Certification and Registration Institute (SPCRI), Iran.

References

- ISTA (International Seed Testing Association). 1986. Handbook on Seed Sampling. ISTA, Zurich, Switzerland, 61 pp.
- ISTA (International Seed Testing Association). 2013. The germination test. In: "International Rules for Seed Testing". ISTA, Bassersdorf, Switzerland, 56 pp. DOI: https://doi. org/10.15258/istarules.2017.05
- ISTA (International Seed Testing Association). 2017. Seed health testing. In: "International Rules for Seed Testing". ISTA, Bassersdorf, Switzerland.

- Abedi-Tizaki M., Sabbagh S.K. 2012. Morphological and molecular identification of Fusarium head blight isolates from wheat in north of Iran. Australasian Journal of Crop Sciences 6 (9): 1356–1361.
- Aggarwal R., Srinivas P., Srivastava K.D., Singh, D.V. 2008. Soil borne diseases of wheat and their management. p. 165–217.
 In: "Advances in Soil Borne Plant Diseases" (M.K. Naik, G.S. Devika Rani, eds.). New India Publishing Agency. New Delhi, India, 448 pp.
- Alvarez C.L., Somma S., Moretti A., Fernandez Pinto V. 2010. Aggressiveness of *Fusarium graminearum* sensu stricto isolates in wheat kernels in Argentina. Journal of Phytopathology 158 (3): 173–181. DOI: https://doi.org/10.1111/j.1439-0434.2009.01596.x
- Amarasinghe C.C., Tamburic-Ilincic L., Gilbert J., Brûlé-Babel A.L., Fernando W. 2013. Evaluation of different fungicides for control of Fusarium head blight in wheat inoculated with 3ADON and 15ADON chemotypes of *Fusarium graminearum* in Canada. Canadian Journal of Plant Pathology 35 (2): 200–208. DOI: https://doi.org/10.1080/07060661.20 13.773942
- Anonymous. 2015. Agricultural statistics, First volume-horticultural and field crops. Ministry of Jihad-e-Agriculture, Programing and Economic, Statistics and Information Technology Office, 158 pp. (in Persian)
- Asran M., Eraky Amal M. 2011. Aggressiveness of certain Fusarium graminearum isolates on wheat seedlings and relation with their trichothecene production. Plant Pathology Journal 10 (1): 36–41. DOI: https://doi.org/10.3923/ ppj.2011.36.41
- Bai G.H., Desjardins A.E., Plattner R.D. 2002. Deoxynivalenol nonproducing *Fusarium graminearum* causes initial infection, but does not cause disease spread in wheat spikes. Mycopathologia 153: 91–98. DOI: https://doi.org/10.1023/ A:1014419323550
- Baskin C.C., Baskin J.M. 1998. Seeds ecology, biogeography, and evolution of dormancy and germination. Academic Press, New York, 666 pp.
- Bhatti F.J., Bhutta A.R. 2002. Seed-borne pathogens associated with certified seed lots of wheat in Pakistan. Quarterly Science Vision 8 (1): 112–115.
- Boutigny A.L., Ward T., Ballois N., Iancu G., Ioos R. 2014. Diversity of the *Fusarium graminearum* species complex on French cereals. European Journal of Plant Pathology 138 (1): 133–148. DOI: https://doi.org/10.1007/s10658-013 -0312-6
- Browne R.A. 2007. Components of resistance to fusarium head blight (FHB) in wheat detected in a seed-germination assay with *Microdochium majus* and the relationship to FHB disease development and mycotoxin accumulation from *Fusarium graminearum* infection. Plant Pathology 56:65–72. DOI: https://doi.org/10.1111/j.1365-3059.2006.01509.x
- Browne R.A., Cooke B.M. 2004. Development and evaluation of an in vitro detached leaf assay for pre-screening resistance to Fusarium head blight in wheat. European Journal of Plant Pathology 110 (1): 91–102. DOI: https://doi. org/10.1023/b:ejpp.0000010143.20226.21
- Browne R.A., Cooke B.M. 2005. A comparative assessment of potential components of partial disease resistance to Fusarium head blight using a detached leaf assay of wheat, barley and oats. European Journal of Plant Pathology 112: 247–258. DOI: https://doi.org/10.1094/PD-89-0404
- Buerstmayr M., Buerstmayr H. 2015. Comparative mapping of quantitative trait loci for Fusarium head blight resistance and anther retention in the winter wheat population Capo × Arina. Theoretical and Applied Genetics 128 (8): 1519–1530. DOI: https://doi.org/10.1007/s00122-015-2527-8
- Burgess L.W., Summerell B.A., Bullock S., Gott K.P., Backhouse D. 1994. Laboratory Manual for Fusarium Research. 3rd ed. University of Sydney and Royal Botanic Gardens, Sydney, Australia.

- Davari M., Didar-Taleshmkaeil R., Hajieghrari B. 2006. Wheat Fusarium head blight and identification of dominant species in Moghan area, Iran. Communications in Agricultural and Applied Biological Sciences 71: 1139–1145.
- Davari M., Wei S.H., Babay-Ahari A., Arzanlou M., Waalwijk C., van der Lee T.A.J., Zare R., Gerrits van den Ende A.H.G., de Hoog G.S., van Diepeningen A.D. 2013. Geographic differences in trichothecene chemotypes of *Fusarium graminearum* in the Northwest and North of Iran. World Mycotoxin Journal 6 (2): 137–150. DOI: https://doi.org/10.3920/ WMJ2012.1493
- Dubey A.K., Singh T. 2005. Location and transmission of seedborne inoculum of *Fusarium moniliforme* in sesame seed. Journal of Mycology and Plant Pathology 35: 12–15.
- FAOSTAT. 2015. FAOSTAT Database. Food and Agriculture Organization of the United Nations, Statistics Division. http://faostat3.fao.org.
- Foroud N.A., Eudes F. 2009. Trichothecenes in cereal grains. International Journal of Molecular Sciences 10: 147–173. DOI: https://doi.org/10.3390/ijms10010147
- Franke J.L., Geary B., Meyer S.E. 2014. Identification of the infection route of a fusarium seed pathogen into Nondormant *Bromus tectorum* seeds. Phytopathology 104: 1306–1313. DOI: https://doi.org/10.1094/PHYTO-03-14-0077-R
- Geleta T., Swart W.J., Mclaren N.W. 2005. Grain mould fungi associated with sorghum from Ethiopia and South Africa and their damage to grains. Ethiopian Journal of Agricultural Sciences 18 (2): 153–164.
- Hajihasani M., Hajihassani A., Khaghani S. 2012. Incidence and distribution of seed-borne fungi associated with wheat in Markazi Province, Iran. African Journal of Biotechnology 11 (23): 6290–6295. DOI: https://doi.org/10.5897/AJB11.3838
- Haratian M., Sharifnabi B., Alizadeh A., Safaie N. 2008. PCR analysis of the *Tri13* gene to determine the genetic potential of *Fusarium graminearum* isolates from Iran to produce Nivalenol and Deoxynivalenol. Mycopathologia 166 (2): 109–116. DOI: https://doi.org/10.1007/s11046-008-9127-y
- Hare M.C., Parry D.W., Baker M.D. 1999. The relationship between wheat seed weight, infection by *Fusarium culmorum* or *Microdochium nivale*, germination and seedling disease. European Journal of Plant Pathology 105: 859–866. DOI: https://doi.org/10.1023/A:1008770001055
- Hernandez-Nopsa J.F., Wegulo S.N., Panthi A., Hallen-Adams H.E., Harris S.D., Baenziger P.S. 2014. Characterization of Nebraska isolates of *Fusarium graminearum* causing head blight of wheat. Crop Science 54: 310–317. DOI: https://doi. org/10.2135/cropsci2013.04.0229
- Khaledi N., Taheri P., Falahati-Rastegar M. 2017. Identification, virulence factors characterization and analysis virulence together with aggressiveness of *Fusarium* spp., causing wheat head blight in Iran. European Journal of Plant Pathology 147 (4): 897–918. DOI: https://doi.org/10.1007/s10658-016 -1059-7
- Khazaei F., Agha Alikhani M., Zare L., Mobasser S., Ali S., Modarres Sanavy M., Mokhtassi-Bidgoli A., Hashemi-fesharaki S. 2014. Seed borne disease in formal and informal wheat (*Triticum aestivum* L.) seed production systems in three provinces of Iran. International Journal of Biosciences 5 (1): 381–388. DOI: https://doi.org/10.12692/ijb/5.1.381-388
- Kikot G.E., Hours R.A., Alconada T.M. 2009. Contribution of cell wall degrading enzymes to pathogenesis of *Fusarium graminearum*: a review. Journal of Basic Microbiology 49: 231–241. DOI: https://doi.org/10.1023/10.1002/ jobm.200800231
- Koch A., Kumar N., Weber L., Keller H., Imani J., Kogel K.H. 2013. Host-induced gene silencing of cytochrome P450 lanosterol C14α-demethylase-encoding genes confers strong resistance to *Fusarium* species. Proceedings of the National Academy of Sciences of the United States of America 110 (48): 19324–19329. DOI: https://doi.org/10.1073/ pnas.1306373110

- Koger C.H., Reddy K.N., Poston D.H. 2004. Factors affecting seed germination, seedling emergence, and survival of texasweed (*Caperonia palustris*). Weed Science Society of America 52: 989–995. DOI: https://doi.org/10.1614/WS-03-139R2
- Kumar A., Singh U.S., Kumar J., Garg G.K. 2008. Application of molecular and immune diagnostic tools for detection, surveillance and quarantine regulation of Karnal bunt (*Tilletia indica*) of wheat. Food and Agricultural Immunology 19 (4): 293–311. DOI: https://doi. org/10.1080/09540100802478194
- Lamichhane J.R., Debaeke P., Steinberg C., Ming P.Y., Barbetti M.J., Aubertot J.N. 2018. Abiotic and biotic factors affecting crop seed germination and seedling emergence: a conceptual framework. Plant and Soil 432 (1–2): 1–28. DOI: https:// doi.org/10.1007/s11104-018-3780-9
- Leslie J.F., Summerell A.B. 2006. The *Fusarium* Laboratory Manual. Blackwell Publishing, 388 pp.
- Lević J., Stanković S. Krnjaja V., Bočarov-Stančić A., Ivanović D. 2012. Distribution and frequency and incidence of seedborne pathogen of some cereals and industrial crops in Serbia. Pesticidii Fitomedicina (Belgrade) 27 (1): 33–40. DOI: https://doi.org/10.2298/PIF1201033L
- Maden S., Singh D., Mathur S.B., Neergard P. 1975. Detection and location of seed borne inoculum of *Ascochyta rabei* and its transmission in chickpea. Seed Science and Technology 3: 667–671.
- Mahmoud S.Y.M., Hosseny M.H., EL-Shaikh K.A.A., Obiadalla A.H.A., Mohamed Y.A. 2013. Seed borne fungal pathogens associated with common bean (*Phaseolus vulgaris* L.) seeds and their impact on germination. Journal of Environmental Studies 11: 19–26. DOI: https://doi.org/10.1371/ journal.pone.0168662
- Mesterházy A., Bartók T., Kászonyi G., Varga M., Tóth B., Varga J. 2005. Common resistance to different *Fusarium* spp. causing Fusarium head blight in wheat. European Journal of Plant Pathology 112: 267–281. DOI: https://doi. org/10.1007/s10658-005-2853-9
- Mesterházy A., Bartók T., Mirocha C.G., Komoroczy R. 1999. Nature of wheat resistance to Fusarium head blight and the role of deoxynivalenol in breeding. Plant Breeding 118: 97–110. DOI: https://doi.org/10.1046/j.1439-0523. 1999.118002097.x
- Mobasser S., Jazayeri M.R., Khazaei F., Sadeghi L. 2012. Wheat seed contamination with seed-borne diseases in cold climatic zone of Iran. International Journal of Plant Production 6: 337–352. DOI: https://doi.org/10.22069/ijpp.2012.769
- Nagaraja O., Krishnappa M. 2016. Location and transmission of Alternaria alternata, Botrytis ricini in castor (Ricinus communis L.). SSRG International Journal of Agriculture and Environmental Science 3 (4): 1–5. DOI: https://doi. org/10.14445/23942568/IJAES-V3I4P101
- Nautiyal P.C. 2009. Seed and seedling vigour traits in groundnut (Arachis hypogaea L.). Seed Science and Technology 37: 721–735. DOI: https://doi.org/10.15258/sst.2009.37.3.19
- Nayyar B.G., Woodward S., Mur L.A., Akram A., Arshad M., Naqvi S.S., Akhund S. 2018. Identification and pathogenicity of *Fusarium* species associated with sesame (*Sesamum indicum* L.) seeds from the Punjab, Pakistan. Physiological and Molecular Plant Pathology 102: 128–135. DOI: https:// doi.org/ 10.1016/j.pmpp.2018.02.001
- Nicholson P, Simpson D.R., Weston G., Rezanoor H.N., Lees A.K., Parry D.W., Joyce D. 1998. Detection and quantification of *Fusarium culmorum* and *Fusarium graminearum* in cereals using PCR assays. Physiology and Molecular Biology of Plants 53 (1): 17–37. DOI: https://doi.org/10.1006/ pmpp.1998.0170
- Ortega L.M., Kikot G.E., Astoreca A.L., Alconada T.M. 2013. Screening of *Fusarium graminearum* isolates for enzymes extracellular and deoxynivalenol production. Journal of Mycology 2013: 1–7. DOI: https://doi.org/10.1155/2013/358140
- Osroush S. 2010. Guideline on control and certification of cereal seeds. Ministry of Jihad-e-Agriculture, Agricultural

Research, Seed and Plant Certification and Registration Research Institute, Technical Publication Series, 29 pp. (in Persian)

- Panthi A., Hallen-Adams H., Wegulo S.N., Nopsa J.H., Baenziger P.S. 2014. Chemotype and aggressiveness of isolates of *Fusarium graminearum* causing head blight of wheat in Nebraska. Canadian Journal of Plant Pathology 36 (4): 447– 455. DOI: https://doi.org/10.1080/07060661.2014.964775
- Parry D.W., Jenkinson P., McLeod L. 1995. Fusarium ear blight (scab) in small grains – a review. Plant Pathology 44: 207–238. DOI: https://doi.org/10.1111/j.1365-3059.1995.tb02773.x
- Parry D.W., Nicholson P. 1996. Development of a PCR assay to detect *Fusarium poae* in wheat. Plant Pathology 45: 383–391. DOI: https://doi.org/10.1046/j.1365-3059. 1996.d01-133.x
- Pasquali M., Migheli Q. 2014. Genetic approaches to chemotype determination in type B-trichothecene producing *Fusariam*. International Journal of Food Microbiology 189: 164–182. DOI: https://doi.org/10.1016/j.ijfoodmicro.2014.08.011
- Pathak N., Zaidi R.K. 2013. Studies on seed-borne fungi of wheat in seed health testing programme. Archives of Phytopathology and Plant Protection 46 (4): 389–401. DOI: https://doi.org/10.1080/03235408.2012.741978
- Pestka J.J. 2010. Deoxynivalenol: mechanisms of action, human exposure, and toxicological relevance. Archives of Toxicology 84 (9): 663–679. DOI: https://doi.org/10.1007/s00204-010-0579-8
- Pritsch C., Muehlbauer G.J., Bushnell W.R., Somers D.A., Vance C.P. 2000. Fungal development and induction of defense response genes during early infection ofwheat spikes by *Fusarium graminearum*. Molecular Plant-Microbe Interactions Journal 13: 159–169. DOI: https://doi.org/ 10.1094/MPMI.2000.13.2.159
- Purahong W., Alkadri D., Nipoti P., Pisi A., Lemmens M., Prodi A. 2012. Validation of a modified Petri-dish test to quantify aggressiveness of *Fusarium graminearum* in durum wheat. European Journal of Plant Pathology 132: 381–391. DOI: https://doi.org/10.1007/s10658-011-9883-2
- Purahong W., Nipoti P., Pisi A., Lemmens M., Prodi A. 2013. Aggressiveness of different *Fusarium graminearum* chemotypes within a population from Northern-Central Italy. Mycoscience 55: 63–69. DOI: https://doi.org/j. myc.2013.05.007
- Rahman A.U., Tahira R., Abbas A., Iqbal S., Ahmad I., Ahmad W. 2018. Screening of wheat germplasm for seed associated fungi in geographical areas of Pakistan. African Journal of Agricultural Research 13 (5): 258–271. DOI: https://doi. org/10.12692/ijb/7.6.1-16
- Rajput M.A., Pathan M.A., Lodhi A.M., Shah G.S., Khanzada K.A. 2005. Studies on seed-borne fungi of wheat in Sindh Province and their effect on seed germination. Pakistan Journal of Botany 37 (1): 181–185.
- Ruan Y., Comeau A., Langevin F., Hucl P., Clarke J.M., Brule-Babel A., Pozniak C.J. 2012. Identification of novel QTL for resistance to Fusarium head blight in a tetraploid wheat population. Genome 55 (12): 853–864. DOI: https://doi. org/10.1139/gen-2012-0110
- Sakr N. 2017. In vitro assessment of Fusarium head blight spp. on wheat cultivars. Archives of Phytopathology and Plant Protection 50 (5–6): 254–261. DOI: https://doi.org/10.1080 /03235408.2017.1297032
- Schilling A.G., Moller E.M., Geiger H.H. 1996. Polymerase chain reaction-based assays for speciesspecific detection of *F. culmorum*, *F. graminearum* and *F. avenaceum*. Phytopathology 86 (5): 515–522. DOI: https://doi.org/10.1094/ Phyto-86-515
- Shin S., Kim K.H., Kang C.S., Cho K.M., Park C.S., Okagaki R., Park J.C. 2014. A simple method for the assessment of fusarium head blight resistance in Korean wheat seedlings inoculated with *Fusarium graminearum*. The Plant Pathology Journal 30 (1): 25–32. DOI: https://doi.org/10.5423/ ppj.oa.06.2013.0059

- Soltanloo H., Ghadirzade Khorzoghi E., Ramezanpour S.S., Kalateh Arabi M. 2011. Genetic analysis of Fusarium head blight resistance in bread wheat. Australasian Plant Pathology 40 (5): 453–460. DOI: https://doi.org/10.1007/s13313-011-0071-9
- Souza M.L., Pacheco Silva D.R., Fantecelle L.B., de Lemos Filho P.J. 2015. Key factors affecting seed germination of *Copaifera langsdorffii*, a Neotropical tree. Acta Botanica Brasilica 29: 4. DOI: https://doi.org/10.1590/0102-33062015abb0084
- Starkey D.E., Ward T.J., Aoki T., Gale L.R., Kistler H.C., Geiser D.M., Suga H., Tóth B., Varga J., O'Donnell K. 2007. Global molecular surveillance reveals novel Fusarium head blight species and trichothecene toxin diversity. Fungal Genetics and Biology 44 (11): 1191–1204. DOI: https://doi. org/10.1016/j.fgb.2007.03.001
- Tekle Š., Skinnes H., Bjørnstad Å. 2013. The germination problem of oat seed lots affected by Fusarium head blight. European Journal of Plant Pathology 135: 147–158. DOI: https:// doi.org/10.1007/s10658-012-0074-6
- Thippeswamy B., Krishnappa M., Chakravarthy C.N. 2006. Location and transmission of *Alternaria solani* and *Fusarium* oxysporum in tomato. Asian Journal of Microbiology Biotechnology and Environmental Science 8 (1): 45–48.
- Tsedaley B. 2016. Detection and identification of major storage fungal pathogens of maize (*Zea mays* L.) in Jimma, Southwestern Ethiopia. European Journal of Agriculture and Forestry Research 4 (2): 38–49. DOI: https://doi. org/10.4172/2157-7471.1000338
- Wan Y.F., Yen C., Yang J.L. 1997. Sources of resistance to head scab in *Triticum*. Euphytica 94 (1): 31–36. DOI: https://doi. org/10.1023/A:1002982005541
- Wanyoike W.M., Kang Z., Buchenauer H. 2002. Importance of cell wall degrading enzymes produced by *Fusarium graminearum* during infection of wheat head. European

Journal of Plant Pathology 108: 803–810. DOI: https://doi. org/10.1023/A:1020847216155

- Warham E.J. 1990. Effect of *Tilletia indica* infection on viability, germination and vigour of wheat seed. Plant Disease 74: 130–135. DOI: https://doi.org/10.1094/PD-74-0130
- Wegulo S.N., Baenziger P.S., Nopsa J.H., Bockus W.W., Hallen-Adams H. 2015. Management of Fusarium head blight of wheat and barley. Crop Protection 73: 100–107. DOI: https://doi.org/10.1016/j.cropro.2015.02.025
- Wegulo S.N. 2012. Factors influencing deoxynivalenol accumulation in small grain cereals. Toxins 4: 1157–1180. DOI: https://doi.org/10.3390/toxins4111157
- Wu A.B., Li H.P., Zhao C.S., Liao Y.C. 2005. Comparative pathogenicity of *Fusarium graminearum* isolates from China revealed by wheat coleoptile and floret inoculations. Mycopathologia 160 (1): 75–83. DOI: https://doi.org/10.1007/ s11046-005-1153-4
- Yoshida M., Kawada N., Nakajima T. 2007. Effect of infection timing on Fusarium head blight and mycotoxin accumulation in open and closed-flowering barley. Phytopathology 97 (9): 1054–1062. DOI: https://doi.org/10.1094/phyto-97-9-1054
- Zare L., Harsini M., Hosseini-bai S., Motieshare B. 2006. Contamination of seed harvested wheat loads to a number of seed-borne fungal pathogen. In: Proceedings of the 17th Iranian Plant Protection Congress, vol. II, 2–5 September 2006, Karaj, Iran, 24 pp.
- Zhang J.B., Wang J.H., Gong A.D., Chen F.F., Song B., Li X., Li H.P., Peng C.H., Liao Y.C. 2013. Natural occurrence of Fusarium head blight, mycotoxins and mycotoxin producing isolates of *Fusarium* in commercial fields of wheat in Hubei. Plant Pathology 62 (1): 92–102. DOI: https://doi. org/10.1111/j.1365-3059.2012.02639.x
- Zhou J., Deckard E.L. Ahrens W.H. 2005. Factors affecting germination of hairy nightshade (*Solanum sarrachoides*) seeds. Weed Science 53: 41–45. DOI: https://doi.org/10.1614/WS-04-100R1